a) NH₃

Chapter 18 Study Questions

3. Classify each of the following substances as an oxidizing agent, reducing agent or both. List

d) NO_3^-

 $2 \text{ Br}^-(aq) + I_2(s),$

1. Calculate the oxidation number for nitrogen in the following substances:

 \rightarrow

b) N₂

 $Br_2(l) + 2 I^-(aq)$

b) which element is increasing in oxidation number?

a) which substance is being reduced?

c) which element is gaining electrons?d) which substance is the oxidizing agent?e) which substance is the reducing agent?

2. In the oxidation-reduction reaction,

c) NO₂

	the oxidizing agents in order of decreasing strength; list the reducing agents in order of decreasing strength (use E^{o} Table): $Ni(s)$, $H^{+}(aq)$, $Au(s)$, $Cl_{2}(g)$, $Sn^{2+}(aq)$, $Mg(s)$, $Fe^{2+}(aq)$				
4.	For each of the following reactions: 1) identify the oxidation and reduction half-equations, and 2) balance the equation (adding H^+ and H_2O as needed), 3) find E^o (in volts) and 4) determine whether the reaction is spontaneous under standard conditions. a) $Ag(s) + Cu^{2+}(aq) \rightarrow Ag^+(aq) + Cu(s)$ b) $Ni(s) + MnO_4^-(aq) \rightarrow Ni^{2+}(aq) + Mn^{2+}(aq)$ c) $Mn^{2+}(aq) + NO_3^-(aq) \rightarrow MnO_2(s) + NO(g)$				
5.	 For each of the following reactions: 1) find E° (in volts) and 2) determine whether the reaction is spontaneous under standard conditions. a) the reaction between iron and iron(III) ions to give iron(II) ions. b) the following cell: I⁻ I₂ Zn²⁺ Zn 				
6.	Which of the following ions will oxidize Br^- ion to Br_2 ? a) Pb^{2+} b) H^+ c) Au^{3+} d) MnO_4^-				
7.	 7. A voltaic cell has an aluminum electrode in Al₂(SO₄)₃ solution in one compartment and the other compartment has a lead electrode in PbSO₄ solution. a) Which has a greater tendency to be oxidized, Al or Pb? Write a balanced equation for the spontaneous reaction. b) Draw a diagram of the voltaic cell, including the anode and cathode the direction of flow of electrons, positive ions and negative ions Which electrode will increase in mass? 				

8. The following table contains data obtained by measuring the voltage between two metals in an experiment like the one you did with a lemon:

Voltaic Cell	Anode (-)	Cathode (+)	Cell Voltage (v)
Pb/Ni	Ni	Pb	0.10 volts
Pb/Au	Pb	Au	0.80 volts
Pb/Fe	Fe	Pb	0.25 volts
Ni/Au	Ni	Au	0.90 volts
Ni/Fe	Fe	Ni	0.15 volts
Fe/Au	Fe	Au	1.05 volts

- a) From the data in the table above, which metal is the strongest reducing agent?
- b) From the data in the table above, which metal is the weakest reducing agent?
- c) Using the reduction of lead (Pb) as a reference, construct a half-cell voltage table from the experimental data above.

Summary of Chapter 18: Electrochemistry

definitions from Chapter 4 oxidation and reduction oxidizing and reducing agents oxidation number oxidation-reduction reactions balancing oxidation-reduction reactions voltaic cells anode and cathode direction of electron and ion flow porous barrier/salt bridge standard voltages: E°_{OX} and E°_{red} applications of values for E°: calculation of cell voltage (E°) reaction spontaneity strength of oxidizing and reducing agents electrolytic cells